MicroCART

FinaL Report

SDMay24-32
Dr. Phillip Jones
Trevor Friedl, Justin Kenny, Steven Frana,
Will Maahs, Clayton Kramper, Travis Massner
sdmay24-32@iastate.edu

https://sdmav24-32.sd.ece.iastate.edu

Revised April Of 2024

Table of Contents

1 Definitions
1.1 Glossary of Terms
2 Introduction
2.1 Problem Statement
2.2 Intended Users and Uses
2.3 Skill required covered by the team
2.4 Project management style used by team
3 Revised Design
3.1 Requirements & Constraints
3.2 Engineering Standards
3.3 Security Concerns and Countermeasures
3.4 Design Evolution
4 Implementation
4.1 Detailed Design
4.2 Description of Functionality
4.3 Notes on Implementation
5 Testing
5.1 Process
5.2 Results
6 Broader Context
7 Conclusion
7.1 Review of Progress
7.2 Value of Design
7.3 Future Steps
Appendix 1: Operation Manual
Appendix 2 Initial Design(s)
Appendix 3 Other Considerations
Appendix 4 Code

O O 9 OO0 A B A A WW

—
= =

=
N

12
13
15
16
16
17
17
19
25
27
28

1 Definitions

1.1 GLOSSARY OF TERMS

Crazyflie - The small drone used for the Embedded Systems Design (CPRE 488) “MP-4” Lab. It is
manufactured by Bitcraze, and has open-source Embedded Systems Designware, which can be
easily written.

FlyPi - Larger custom quadcopter built by previous MicroCART teams. Composed of four brushless
motors, a previous MicroCART team-produced PCB controller, and a Raspberry Pi Zero 2. Currently
in an incomplete state.

Pycrocart GUI - Python-based GUI used for interacting with Quadcopters, which currently is
stand-alone and connects to the drones on its own accord.

Groundstation - Name used for the group of software components that lie in between the
quadcopters and the GUI: Backend, Crazyflie Adapter, and Crazyflie Groundstation.

Backend - Software module written in C which handles incoming packets from the frontend and
sends them to the necessary destination. Also handles data from cameras and other sources.

cflib - Also known as the “Crazyflie-lib” Open-source Python library created by Bitcraze used for
communicating with the Crazyflies using client-side software.

cflib Groundstation - New software module that communicates with the Crazyflies using cflib and
replaces the Crazyflie Adapter and Crazyflie Groundstation.

Crazyradio - Bitcraze-manufactured USB radio stick that is designed to send packets to and from
the Crazyflies from a host PC.

FreeRTOS - Free real-time operating system, which is used on one of the cores of the Raspberry Pi.

Bootcamp - Document with links to necessary resources designed to introduce people new to the
infrastructure in six weeks or less.

CPRE 488 - Also known as “Embedded Systems Design”. A class offered at lowa State University
currently taught by professor Dr. Phillip Jones. Teaches computer engineering students advanced
topics in embedded systems such as FGPA programming and control systems.

MP-4 - Standing for “Machine Problem-4”, one of the five labs taught in CPRE 488, emphasizing
applications of control systems for open-source quadcopters using Crazyflie technology.

2 Introduction

2.1 PROBLEM STATEMENT

The current MP-4 lab delivered to CPRE 488 students to teach them about control systems theory
using quadcopters can be improved to provide a better learning experience for students. On top of
this, the FlyPi needs to be finished and more functionalities added for research purposes and to
demo to prospective students.

2.2 INTENDED USERS AND USES

Dr Jones - The FlyPi and any improvements made to the infrastructure will allow him to get future
microCART teams and researchers acclimated to the infrastructure quicker.

CPRE 488 students - The improved MP-4 will make learning control systems theory easier and
remove any frustrations with the current infrastructure.

Prospective ISU Students/Alumni - The FlyPi will be an exciting demo that showcases the degree
program at ISU.

Graduate Researchers using the Controls Lab - The FlyPi will allow them to deploy and test control
algorithms quicker on a platform with more computing power.

2.3 SKILL REQUIRED COVERED BY THE TEAM

Embedded systems design knowledge

o Microcontrollers

o Raspberry Pi environment
Understanding of software and hardware architecture
Knowledge of Oracle VirtualBox and Virtual Machines
Data Networking

Software and Programming Languages
o Python
o C
o C++
o Qt Creator
Linux Environment Experience
Basic knowledge of Control Systems

2.4 PROJECT MANAGEMENT STYLE USED BY TEAM

For this project, the MicroCART team has passed down a repository of developed and documented
code each year for the use of continuing progress of the project’s infrastructure. Throughout our
project, we adopted both a waterfall and an agile methodology to aid in developing our project to
ensure a seamless experience with testing and keeping priorities on a timeline. Using Gantt charts
allowed us to visualize the estimated time breakdown required for each task.

We handled specific tasks and issues that needed to be completed by creating git issues, all of which
were posted on our git repository to keep track of the progress of specific tasks and estimated
timelines for their completion. This allowed us to work towards completing simpler tasks as we
worked towards larger goals, allowing us to keep track of more significant project deadlines
throughout the semester. Through git, we also created forked branches for each task to allow team
members to create pull requests after their tasks. This allowed other members to review the
changes made towards the completion of a problem and allowed for milestones to be tested before
integrating back into the primary system.

3 Revised Design

3.1 REQUIREMENTS & CONSTRAINTS
MP-4 Lab:
Functional:

° The GUI does not crash or freeze and communicates with the backend.
e Combine the Crazyflie Groundstation and Crazyflie Adapter using cflib.

Non-Functional:

e Improve video and wiki documentation for the lab and upload them to the MicroCART
YouTube channel.
o A better introduction to enable next year’s team to start work faster.

FlyPi:
Functional:

° Add Raspberry Pi to the FlyPi and have it running FreeRTOS on one core and Ubuntu on
the other three cores.
o Securely Mounted
o Sufficient Power Supply (constraint)
o Communication with the control board

General/Other:
Non-functional:
e All development by year-end is successfully merged into the main branch of the repository;
personal branches of code are deleted.
New developments are documented, and any old documentation is updated as needed.
The introductory materials (Bootcamp) are clear enough so that future teams/researchers

can be introduced to the system in 6 weeks or less.
e New VM file is hosted online and is available for access for students and researchers.

3.2 ENGINEERING STANDARDS

TCP/IP Networking Protocol - Used to communicate with drones.

3.3 SECURITY CONCERNS AND COUNTERMEASURES

Since the Crazyflie platform created by Bitcraze is open-source, there are no major security
concerns with open access to the MicroCART git repository.

3.4 DEsiGN EvoLuTioN
Groundstation Architecture:

Upon the start of the project design phase, we were left with the use of a final design from last year’s
MicroCART iteration for the Groundstation system used for the infrastructure implemented for
CPRE 488’s MP-4 lab. Appendix 2, Figure 15, details the high-level structure of the Groundstation
design responsible for interfacing all peripherals throughout the project. Below in Figure o, we
feature the necessary changes to change our system from using the Crazyflie Adapter to our newly
created cflib adapter.

Groundstation Frontend

A
TCP Connection

Groundstation Backend

-TCP Connecti

Bitcr: i
’—V R}}}—mﬂ:
Drone

TCP Connection

Test Stand
TCP Connection FlyPi

Figure 1: Updated Groundstation architecture with noted modifications

Remains As Is

Slotting our new cflib adapter into the infrastructure requires changing three main components of
our Groundstation design: the backend adapter, our new Crazyflie Adapter (using cflib), and the
GUI presented on the Groundstation Frontend. Changes to the GUI are necessary as the changes in
the backend infrastructure will need to handle the data differences and any other bugs caught along
the way. The backend subsystem will need changes allowing for new connections to the cflib-based
adapter to ensure that the backend encapsulates that data similarly to the old adapter. And finally,
with importing the cflib technology, the adapter endpoints required a total rework for the design
changes to be implemented functionally.

FlyPi:

As described in Figure 2, the Crazyradio is responsible for sending CTRP Packets, a standard
developed by Bitcraze for packet structure formatting into the network communication program
intended to transmit packets over on the Raspberry Pi Zero 2W. After packets were sent and
received, data would be sent into the shared memory space and parsed between the Ubuntu and
Baremetal cores in order to control the flight and other necessary calculations for the FlyPi
quadcopter.

Development PC Raspberry Pi Zero 2W
cflib —>|crazyradio &<—CRTP PacketsH—> net‘g:zgrz:)nmm
Ubuntu
MicroCART / crazyflie
Ground Station
Shared Memory Space
Bare-metal

crazyflie FreeRTOS
firmware

Figure 2: Initial FlyPi Design

The FlyPi was initially intended to use the crazy radio packets to transmit data between the
Groundstation and quadcopter. We modified this design to use a TCP connection between the
Groundstation backend and quadcopter. We then deploy the adapter on the Ubuntu side of the
drone. This allows us to take advantage of a more robust connection, use less hardware, and parse
the packets into a format suitable for the FreeRTOs firmware. These modifications are shown in
Figure 4.

4 Implementation

4.1 DETAILED DESIGN

MP-4/Infrastructure

main

Packets from Decoded

groundstation ;CDKEt Commands| Log Files
Packet | Input .

» » cf_connection < |

Queue

A~

. Function Logfile
groundstation_socket A calls Handler
e

Packets to Encoded &
groundstation Packet /
Qutput
T | [——— Queue ¥
cflib
A Log Data

cflib groundstation

Crazyradio
packeis

Crazyflie

Figure 3: Detailed Crazyflie adapter block diagram

A detailed diagram of the internal structure of the new Crazyflie adapter using cflib is shown in
Figure 3, showing the individual classes and the data flow between them. The groundstation_socket
class manages the TCP connection to the Backend and is responsible for encoding and decoding
packets as they leave and enter the system. The main class holds two queues, one for input and one
for output, which organizes incoming and outgoing packets between the drone and the Backend.
When an incoming packet is pulled from the queue, it is parsed to determine which function from
cf_connection to call. The cf _connection function manipulates the data accordingly and calls the
appropriate cflib function to produce the desired effect on the drone. The results from the cflib
function are packed and placed into the output queue and are then sent back to the BackEnd. There
is a particular case for logging data sent to the LogfileHandler class. The LogfileHandle class writes
logging data to local files on the system, and the path to this file is sent back to the BackEnd.

10

FlyPi

i) TCP connection]
Microcart infrastructure FlyFi Adapter

BackEnd T l Packets
ot

Y

Shared Ubuntu
| Memory
buffer
A
l Packetis
Modified Crazyflie
Development PC firmware FreeRTOS
FlyPi

Figure 4: Detailed FlyPi block diagram

The design in Figure 4 fulfills the requirements for the FlyPi since it includes partitioning the
Raspberry Pi CPU. Since the FlyPi will be using a modified version of the Crazyflie firmware,
keeping the packets as intact as possible throughout the process is a high priority for this design. To
communicate with the FlyPi, the FlyPi adapter running on the Pi Zero’s Linux cores accepts a TCP
connection from the BackEnd to handle packet flow. This FlyPi adapter is a modified version of the
Crazyflie adapter. Still, instead of using cflib to transmit packets over the radio, it places packets
into shared memory using the Python ‘mmap’ command. The modified Crazyflie firmware running
on the FreeRTOS cores can then read any command packets from the shared memory buffer and
place data to be sent back to the BackEnd in the shared memory buffer for the adapter to read.

As we explored the inner workings of how the GroundStation handles logging data points for the
GUI to plot, we discovered that this was handled by the GroundStation creating files, writing data
points into them, and then sending the path to these files back to the Frontend. We hypothesized
that this process of writing and reading files was partially responsible for the slow speeds and
crashing of the GUI. To rectify this issue, we designed a new packet structure shown by the link
below, that will exclusively use the TCP sockets to communicate data between processes. To
facilitate this, we needed to add more packet types and modify the existing ones to handle our
proposed changes, and we will need to update the CLI to handle these packets as well.

https://git.ece.iastate.edu/danc/MicroCART/-/wikis/MicroCART-Packet-Structure

11

4.2 DESCRIPTION OF FUNCTIONALITY

The functionality of the MP4 Infrastructure design beyond what is described above is as follows:
when using the infrastructure, a shell script in the repository can start all components and connect
them in succession. After a drone is started up and finished its startup sequence, the user can
specify a radio number when running the shell script that will open the Crazyflie adapter and
attempt to connect it to the drone. After this is successful, the BackEnd is started, and the socket
connection between the BackEnd and Crazyflie adapter is opened. Then, the GUI is started,
connecting to the BackEnd via socket and sending command messages. The user can then use the
GUI to send the desired command messages through the infrastructure to the drone. Each part of
the infrastructure and also be run individually for greater control and testing purposes.

Our designs for the MP4 Infrastructure and FlyPi are intended to provide a high level of decoupling
between the various systems comprising the entire MicroCART project. The Frontend options give
the user greater flexibility in controlling the drone and displaying their data. The Backend allows
for connecting other peripherals to the system, such as the lighthouses or camera trackers. Having
separate adapters for each quadcopter type allows the same Frontend and BackEnd tools to be used
with different quadcopters or even the future additions of other technology.

Concerning the FlyPi design, our most significant task concerned our need to partition the cores
into running different instances of operating systems, for example, one of the cores will need to run
FreeRTOS while the other three cores will be required to run Ubuntu. The functionality of the
design is intended to be as described in Figure 4. Appendix 1 contains detailed information about
how the cores are partitioned.

We can consider our current design implementation to be satisfactory to our current design’s
previously agreed functional and non-functional requirements, as the functionality of the designs
improves the quality of the MP4 system and partitions the FlyPi cores according to the
requirements. Our big focus was to shorten any critical paths from our initial design to support
minimized overhead while delivering an accurate and persistent connection to different systems
throughout the Frontend, Backend, Crazyflie, and FlyPi.

4.3 NOTES ON IMPLEMENTATION

Although we could finish the Crazyflie adapter with cflib and the partitioning of the FlyPi cores,
there were some tasks we didn’t possess the time or resources to complete this semester. We could
not fully move away from the file-based logging system as described in our revised packet structure,
but we have left detailed notes for next year’s team to pick up where we left off. Likewise, the FlyPi
adapter currently contains a basic shared memory implementation as proof of concept. Still, it
doesn't fully implement a ring-style shared memory buffer, as the application will demand when
fully completed. Due to hardware differences in cross-compilation, we never finished modifying the
Crazyflie firmware to run on the Raspberry Pi architecture. Likewise, we left detailed instructions
for next year’s team to pick up on FlyPi development quickly.

12

5 Testing

5.1 Process

Due to the nature of our project and the fact that our project's infrastructure used many different
parts of the software at once, we found that manually testing the changes we made worked the best
and gave us a good picture of whether our changes were functioning correctly. To test the different
aspects of our project, we implemented a few methods of manual testing.

To test the changes to the Crazyflie adapter and cflib, we acted as a student and manually went
through the MP4 lab. We made sure to test every aspect of the changes that we made and made
sure that the MP4 lab experience was as expected. Through the MicroCART GUI, there is a tab that
allows the user to set parameters for the logging of the crazyflie drone variables. We tested this
functionality to test whether the getparam and setparam worked as expected and whether it would
be completed in a timely manner. We did this multiple times to get a good understanding of the
quality of the changes.

When getting the MP4 lab ready for students to use, we thoroughly tested each of the crazyflie
drones that we had in order to determine whether they were suitable to be used by the students for
the MP4 lab. To do this, we would test various functionalities of the MP4 lab that the drones should
have been able to successfully perform. When testing we would also test from the perspective of
multiple different user models. For example, we would test the GUI like we were a user who didn’t
know anything about the framework or infrastructure and this was their first time using the GUI, or
a user who had some knowledge of controls but no example with this specific framework. Doing
this ensured that we tested as many edge cases as we could that may result in unexpected behavior.

From these tests, we were able to determine what needed to be repaired on the drones. The first test
we ran on the drones was to test whether the drone would turn on. If the drone was unable to turn
on, this usually indicated that there was a problem with the power cord connection or some other
hardware problem with the drone. Next, we would test whether the drone was able to be flashed
with the firmware through the crazyradio. If the drone was unable to be flashed with the up-to-date
firmware, this usually indicated that there was a connectivity issue either with the crazyradio or
crazyflie. After this, we would test whether we were able to open the lab GUI. Since the GUI needed
a connection from the crazyflie drone to open properly, the GUI not opening (or opening in a faulty
state) usually indicated that there was a connectivity issue with the crazyflie. Finally, if the drone
was on, with the up-to-date firmware, and the GUI opened, we would test whether the crazyflie was
able to receive thrust commands from the GUI. If the drone thrust after receiving these commands,
this would indicate that there were connectivity issues or that the drone propellers were faulty. If
the drone passed all of these tests, we determined that the drone was able to be used by the MP4
lab. If the drone did not pass the tests, we would alleviate the associated issue.

It is also worth noting that since our infrastructure is used in the MP4 lab, many students in 488
were testing our infrastructure by doing the lab as well. This gave us an excellent opportunity to
gather feedback from a class of users. Comparing the feedback given by last year's students to this
year's students was an effective way to test our modifications to the framework. We also were able
to incorporate some of the minor changes into the MP4 lab infrastructure, and left notes for next
year’s team with the feedback we receive and how it should be addressed.

3

5.2 RESULTS

We received The following results from our testing of the MP4 lab with our new Crazyflie adapter.
In Figure 5, you can see the different metrics that we tested, such as the time between logging
events received, the number of times the GUI had to be restarted, the time it took to get and set a
parameter, and various other metrics. As you can see in Figure 5, the results from our testing
showed that our new Crazyflie adapter significantly improved the time it took to get a parameter
from 2.06 seconds down to 0.746 seconds. From the results, we also noticed that the number of
times that we had to restart the GUI dropped from three times to zero times. Among the other
metrics, our new Crazyflie adapter seemed to perform similarly.

Time between logging event Timetoseta Timetogeta Timetosetparam Set parameter
and plot (s) # of restarts parameter (s) parameter (s) from JSONfile (s) completion rate
Original Infrastructure (12 cores) 451 3 0 2.06 19.73 100%
With cflib groundstation (12
cores) 478 0 0 0.746 19.56 100%

Figure 5: Crazyflie adapter testing results

Figure 6 shows our current, up-to-date spreadsheet of the status of the 12 crazyflies. Many of these
drones have undergone various repairs throughout the year, so this spreadsheet has been updated
frequently with their status. As you can see, many of the drones are in a healthy state. They passed
the tests we ran on them and can thrust, showing they are MP4 lab-ready. There are a few drones,
drones four and eight, that passed all of our tests. However, these drones have a loose power cable
that often shuts off the drone if mismanaged. These drones will need their power cable to be
resoldered onto the drone to ensure they are ready for next year’'s MP4 lab. Another drone that is
having power cable problems is drone three. Drone three’s power cable is completely disconnected
from the drone so that will need to be resoldered onto the drone as well. Finally, drones five and
nine have an issue with them that we call “the blue light of death.” This refers to when the drone is
in a broken state, indicated by only one of the four lights on the drone illuminating. We have faced
this problem many times throughout the year, and many times, we were unable to find a consistent
solution to this problem. Usually, the solution was one of several different remedies, such as
reflashing the drone via USB or setting the drone to a bootloader mode; however, there still seemed
to be several times when our solutions didn’t work.

MP4 Drones

Channel

Status

Figure 6: MP4 lab drone testing results

14

6 Broader Context

15

the research facilitated by this could be
used to positively impact the public.

Area Description Examples

Public health, Not particularly relevant to our project | Using the PID control algorithms
safety, and directly, since it mainly deals with tested on the system to use drones
welfare research. However, in a broad sense, to perform rescue operations.

Global, cultural,

In an indirect way, the improvement of

A student could spend 4 hours

infrastructure could potentially have
many industrial applications. An
interesting demo could potentially
attract new students to ISU.

and social the MP4 lab will make it easier for learning about PID control rather
students to focus on learning instead than trying to reboot the GUI after
of struggling with the system. it freezes every time.
Environmental Little to none, since this is a small scale | No particularly good examples.
project for research purposes that
doesn’t particularly interact with the
environment.
Economic The research done via the A greater number of new students

at ISU would increase the amount
of funding going towards its
research.

16

7 Conclusion

7.1 REVIEW OF PROGRESS
MP-4 Lab:

For the MP4 lab, we simplified the current infrastructure by combining the Crazyflie groundstation
and adapter using cflib in Python. This allows for better response times when retrieving or setting
parameters for the drone. This also results in fewer GUI crashes, and better response times. We
successfully slotted this new component into the MP4 infrastructure and manually tested it to
ensure it was valid. No major bugs arose from this component during the duration of the MP4 lab.
After experiencing some other issues with the VM and the Crazyflie hardware, we are leaving
detailed documentation of what issues we faced and what solutions we found to ensure next year’s
team can create an even more valuable MP4 experience.

We had originally planned to also slot the python-based Pycrocart GUI into the MP4 infrastructure.
Despite making significant progress towards this goal, we were unable to finish this before the MP-4
lab began. When it became clear to our team that we would not be able to complete the
development of the new GUI before the MP-4 lab, our team decided to shift more of our attention
to the development of the FlyPi. In conjunction with this, after working with infrastructure more
closely and learning its inefficiencies, we designed a new packet structure that would eliminate the
use of reading and writing to files for plotting logging data. We were unable to implement this
feature either, but we have created documentation on the progress towards these two goals.

Fly Pi:

After modifying some open-source tutorials, we have successfully partitioned the cores for AMP
(Asymmetric Multi-Processing) on the Raspberry Pi. One core runs FreeRTOs, while the other three
cores run Ubuntu Linux. This setup can be run on a Raspberry Pi 3, 4, and Zero 2. We have been
able to successfully run several simple baremetal applications which we created, such as the LED
blink example shown in Appendix 1. We can successfully communicate bytes between these cores
using our own baremetal implementation of shared memory for the Raspberry Pi 3 and Zero 2,
while using a shared memory library for the Raspberry Pi 4.

We have made progress refactoring the CrazyFlie firmware in order to port it over to the Raspberry
Pi. In its current state it is compilable, but requires some further changes in order to run it on the
version of FreeRTOS we would like to use for the Raspberry Pi’s. Due to time constraints, we will be
unable to fully cross-compile the firmware by the end of the semester, but we are creating detailed
steps on our process, showing the errors we received, and describing how thought these issues
might be fixed.

17

7.2 VALUE OF DESIGN

MP-4 Lab:

The MP-4 lab is an extremely valuable exercise for understanding PID controllers. CPRE 488
students are able to adjust the PID constants for the controllers used by the drones. This allows
students to gain practical experience in tuning PID controllers. The MP-4 infrastructure also
enables students to visualize their changes to the controller by graphing setpoints and sensor
values, allowing students to gain a deeper understanding of the effect each constant has on the
behavior of the controller. Our particular design aims to provide a more enriching experience by
removing many of the difficulties students face when working with the lab infrastructure so they
can focus more on learning the control systems concepts.

FlyPi:

The FlyPi drone offers researchers the potential to experiment with a larger vehicle with expanded
capabilities. This drone gives users the ability to use a larger drone to experiment with and test their
control algorithms. The FlyPi offers an increased payload capacity, which could support the
addition of multiple useful and interesting features, such as a camera or some sort of carrying
mechanism.

The FlyPi also gives users access to a significantly higher amount of computation power. The
microprocessor on the Raspberry Pi Zero 2 has four cores, as opposed to the crazyflie drone’s
microprocessor, which only contains a single core. This allows us to run all of the drone’s firmware
on one core of the Raspberry Pi Zero 2 using the FreeRTOS operating system. Meanwhile, the other
three cores are utilizing the Ubuntu Linux Operating System which can be used however the
users/developers best see fit. This computation power enables support for any number of additional
features a user/developer may have.

7.3 FUTURE STEPS
MP-4 Lab:

The biggest flaw in the infrastructure is the GUI application. More specifically the logging
functionality of the GUI. We have observed that setpoint packets from the GUI to the drone are
frequently dropped. This results in the drone getting the wrong setpoint, which can make tuning a
drone difficult. Additionally, we have noticed that the GUI frequently experiences a high latency
when plotting live data it is receiving from the crazyflie drone’s onboard sensors. Future teams
should consider rewriting the GUI application. Adding a packet for plotting instead of
reading/writing from a file may improve the system's overall responsiveness. Ideally, there should be
two separate packets: one being used for logging large amounts of data that does not need to be
represented as a graph in real-time, and the other being used to relay a smaller amount of data that
is intended to be graphed in real-time. Implementing the new packet structure we proposed would
be an efficient way of achieving this goal.

FlyPi:

18

In order to get the FlyPi in the air using the Raspberry Pi Zero 2, our team estimates that the largest
task will be to rewrite the crazyflie firmware such that it can be run on the FlyPi. The most
challenging part of rewriting the firmware will be the IMU firmware. The first step in this process is
to find all of the firmware code that pertains to hardware specific to the crazyflie drones, and
rewrite it for the hardware specific to the FlyPi. This will not be a trivial task. This will require an
intimate understanding of the IMU and peripheral board designed by last year’s team, which our
team did not have the time to fully grasp. Finishing the firmware rewrite will also involve ensuring
the version of FreeRTOS used is compatible with the Raspberry Pi and making any changes to the
drone firmware to integrate a potentially different version of FreeRTOS.

Another future step for the FlyPi will be creating a more robust shared memory buffer between the
cores. Our team executed a simple version of a shared memory buffer as proof of concept, but we
didn’t have the time to complete a version suitable for the needs of the system. The system will
eventually need two ring-style buffers, one each for the partitions to read and write from. More
code will have to be written on both the baremetal C and python-based adapter applications to
manage and use these shared memory buffers correctly.

19

Appendix 1: Operation Manual

MP4 Infrastructure Operation Manual

The steps to operate the MP4 infrastructure are shown below. This is a simplistic version of what
the system is capable of for illustrative purposes. For more detailed instructions, theory being
operation, and best practice, consult the MP4 Lab document given to students:
https://class.ece.iastate.edu/cpre488/labs/MP-4.pdf

1. After opening the VM, attach a battery to the Crazyflie and take note of which number it
has on the bottom. Multiply this number by ten to get the radio number, which will be
important in later steps.

2. Connect a Crazyradio to the development PC and select it in the VM’s menu under the path
Devices > USB > Bitcraze AB Crazyradio.

3. Ifusing the shell script to start the infrastructure, open a terminal and use the “crazycart
[radio number]” command to launch all necessary components. After some time and
terminal output, the GUI should be active on the screen, as shown in Figure 7. If this step is
followed, skip to step 7

Figure 7: GUI operating with terminal output shown

4. If starting the components manually, open a terminal in the “cflib_groundstation” folder on
the repository and enter the command: ‘python3 main.py [radio number]’. The output will
be displayed as below.

Figure 8: Output from starting crazyflie adapter with cflib

5. Open a terminal in the “groundStation” folder on the repository. First run ‘make’, then run
‘/BackEnd’ This will begin the Backend with the output below:

https://class.ece.iastate.edu/cpre488/labs/MP-4.pdf

20

Figure 9: Output from starting BackEnd

6. Open another terminal in the ‘groundStation’ folder and use the command
‘/GroundStation’ to start the GUI. After the GUI appears, tuning can begin.

Scripts
Backend | Parameters Gamepad | LogBlocks | Control

fBackend

Connect Tt Stand

Figure 10: Launched GUI with terminal output

To begin tuning, use the “Parameters” to alter parameters on the drone. For the MP4 lab,
the “s_pid_attitude” and “s_pid_rate” groups contain all the desired entries. Once an entry
in the dropdown has been selected, a value can either be set with the “Set Param” or read

with the “Get Param” button, as shown in Figure 11 below.

- CrazyCaRT
scripts
Backend | Parameters | Gamepad LogBlocks | Control

Get Param

Group: | s.pid_attitude

B [yawkp
GetParam

Value: 10

Set Param

Group: | 5.pid_attitude

Enry. yaw_kp
Value: 10,000

Set Param

Set Param from JSON file Edit

Note: This may take a few seconds

Figure 11: Getting and setting parameters

21

a. Params can also be set in batches using a JSON file. To do this, click the “Edit”
button to open the JSON file, edit the file as desired, then close it and click “Set
Param from JSON file”, as shown in Figure 12 below.

L= = Gad = ==
-+ [EESSAEEE Save | - o+ x
IR LS

2 "sys":
{

“e_stop":0
"s pid rate":

“roll_kp" :

9 "roll_ki" :
10 "roll kd" :

11 "pitch kp":

o,
0,
0,
0,
9,
o,
0,
0,
]

H
18 "s_pid attitude":
{

20 “roll kp" :
21 “roll ki~ :
2 “roll_kd"

23 “pitch_kp":

Figure 12: Parameters JSON file

8. The “Control” tab is used to control the drone and view output. To send a setpoint to the
drone, enter the desired setpoint in the top left, move the thrust slider to the desired
location, and press “Apply”. Use the “Stop” button to halt the drone.

-

Seripts

Backend Parameters Gamepad | LogBlocks | Control

Send Setpoint 5

(® Manual Setpoint

Pitch [0 |
Rl o
Yaw |107|

® Angle () Rate
| Apply |

| Stop |

Figure 13: Sending a setpoint to the drone

9. To view the logging data from the drone, select logging parameters from the dropdowns in
the bottom left and click “Start Logging”. Logging output should be shown in the logging
panel, as in Figure 14 below.

22

Backend | Parameters Gemepad LogBlocks | Control |

Send setpoint 20

® Angle Rate
| Apply J
[stop J

value

Logging Variables

[satetstimateyan ~| 3o

| ctristdntyaw -]

‘ Loggi

| Logging Variable 4 -
| Logging variable 5 ~ |

[Start Logging |

Figure 14: Logging data

FlyPi/Raspberry Pi Zero 2 Operations Manual

Below are the instructions for compiling and running the LED blink example we have created for
baremetal FreeRTOS on the Raspberry Pi Zero 2W. This once again is an illustrative example of a
simple baremetal application as a proof of concept, since the shared memory and crazyflie firmware
are unfinished and too complex to detail here.

1.

To set up the hardware a TTL cable will need to be connected to the Pi so that UART can be
used to connect to the u-boot console and type commands to the Pi. Raspberry Pi pinout
diagrams are readily available online. The following pin connections should be made for
this example;

a. GPIO 14: TTL TX cable (white).

b. GPIO15: TTL RX cable (green).

c. Ground: TTL ground cable (black).

d. GPIO 17: LED high connection.

e. Ground: LED ground connection.
Once these pins have been connected, open the “uboot-compiler” folder in the repository
and open a terminal. It is imperative that this terminal remains open for the remainder of
this process. Enter the following command:
‘PATH="pwd" /install-Inx/gcc-arm-9.2-2019.12-x86_64-aarch64-none-elf/bin:$PATH’
Remove the SD card from the Pi and attach it to a microSD card reader, then insert it into
the development PC
Using the terminal from Step 2, run the following commands to cross-compile the
baremetal application:

23

cd bm_led_blink/FreeRT0S/Demo/CORTEX_A72_64-bit_Raspberrypi4/uvart
make CROSS=aarché4-none-elf-

sudo cp ./uvart.elf /media/bitcraze/system-boot/

Figure 15: Terminal commands for cross-compilation

5. Eject the SD card from the development PC and insert it into the Raspberry Pi.

6. Connect the TTL cable to a computer with puTTY installed, and check the device manager
to see which COM port the TTL cable is connected to. Replacing “COM3” with the correct
COM port, enter the settings into the puTTY menu as shown in Figure 16 below.

&% PuUTTY Configuration ? X
Category:
(= Session ‘ Basic options for your PuTTY session ‘
Logging Specily the destinati 1 to connect &
. Terminal pecify the destination you want to connect to
i-Keyboard Serial line Speed
-Bell com3 115200
i Features
= Window Connection type:
Appearance ()sSH @ seral ()Other: Telnet ~
Behaviour
Translation Load, save or delete a stored session
Selecti
& Selection Saved Sessions
- Colours
=} Connection FlyPITTL
-Data
Default Settings
Prasy —]
#SSH coms309 Save
Serial ucartpi01
-Telnet Delete
Rlogin

SUPDUP

Close window on exit:
(O Aways () Never © Only on clean exit

About Help Qpen Cancsl

Figure 16: FlyPi TTL settings

7. Power on the Raspberry Pi, and press any key when the ‘Hit any key to stop autoboot’
message appears. Now, the u-boot console will be displayed in the PuTTY terminal.
8. Enter the commands below into the u-boot console.

setenv autostart ves
dcache off

fatload mmc 0:1 OxZ28000000 vart.elf
dcache flush

bootelf Ox28000000

Figure 17: U-boot commands

24

Figure 18: U-boot command output

9. After running these commands, the LED will turn on. Enter the following commands to
boot Ubuntu Linux on the Pi then.

dcache an

run bootcmd

Figure 19: U-boot linux commands

10. After this, Linux will boot. The LED should remain on after Linux finishes, proving that the
bare metal application still operates after Linux has booted.

25

Appendix 2 Initial Design(s)
Groundstation Infrastructure:

All initial designs given to us were implementations of previous designs described by the recent
iteration of MicroCART from last year’s senior design team. The initial design of the GroundStation
features high-level connections from the GroundStation frontend out to the GroundStation
backend and so forth to any peripherals using the infrastructure on experiment or lab PCs. Then,
the GroundStation backend is responsible for interfacing all peripherals through the backend and
the prepackaged Crazyflie Groundstation. In other words, the “Groundstation Backend” is our
adaptation of the system accountable for interfacing with other quadcopters than just the
Crazyflies.

Groundstation Frontend
oy I
GuI i Frontend I CLl
e _T_/

TCP Coimeehan

Custom
—TCP Connectio |=—TCP Connectio Qu tor
Groundstation
Backend

Figure 20: Initial design for Groundstation high-level architecture

Groundstation Frontend: Includes the necessary components for our GUI to interact with the
data being passed in by the backend. The Groundstation Frontend displays this information within
the GUI to show cleanly formatted data and raw packet data featured in the CLI. The frontend
subsystem then directly interacts with the backend subsystem to handle the proper transfer of
packets through a singular TCP connection.

Groundstation Backend: The backend connects a few different main components: our internal
backend subsystem, an adapter (in the case of Figure 20, the Crazyflie Adapter), and the Crazyflie
Groundstation. Our backend subsystem features multiple TCP protocol connections that allow
packets to be sent to other interfaceable quadcopter systems and VRPN Optitrack tracking systems
to have higher-level control of the drones in 3D space-presenting software. The backend also

26

features a TCP connection out to the Crazyflie Adapter, aiding in the formatting of packets to be
sent from Crazyflie-specific hardware to other custom drones, as well as other peripherals such as
our Crazyflie Test Stand and the Crazyradio responsible for wireless networking.

Pycrocart GUI Initial Design:

Figure 21 below denotes the usage of the Pycrocart GUI in replacement of the standard C++ GUI
currently used throughout the infrastructure. The packets sent by the Pycrocart GUI are entirely
independent of the methodologies used to encapsulate the packets used throughout the current
C++ GUI and format the Crazyradio packet using the CRTP protocol (Bitcraze-standard Crazyradio
packets). A TCP socket becomes open between the Pycrocart process and the backend. It transfers
packets between the GUI/CLI and the backend subsystem in the Groundstation infrastructure.

Pycrocart
cul CLI

Socket

BackEnd

Figure 21: High-level structure of FlyPi slot into current MicroCART infrastructure

27

Appendix 3 Other Considerations

As mentioned previously, MicroCART is an ongoing senior design project. As such, we credit all
previous teams who have contributed to working towards our goal. We also appreciate the time,
effort, and knowledge of Dr. Jones, who encouraged us to overcome obstacles and achieve our
maximum potential as a team. One of the particular difficulties of this project is getting a new team
acclimated with the infrastructure every year, and we appreciate his dedication to helping us learn
and grow in the context of this project. Furthermore, we would like to thank several members of the
previous MicroCART team for being continually available to answer questions and assist despite the
duration of their studies coming to an end as an undergraduate student at lowa State University.

28

Appendix 4 Code

All past, present, and future code for the MicroCART team can be found on the MicroCART GitLab
repository: https://git.ece.iastate.edu/danc/MicroCART

https://git.ece.iastate.edu/danc/MicroCART

